Microbial Transformation of Protopanaxadiol and Protopanaxatriol Derivatives with *Mycobacterium* sp. (NRRL B-3805)

K. C. Wang, Perng-Haur Wang, and Shoei-Sheng Lee*

School of Pharmacy, College of Medicine, National Taiwan University, 1 Jen-Ai Road, Section 1, Taipei 100, Taiwan, Republic of China

Received July 11, 1997®

Transformation of the dammaranes (20*R*)-dihydroprotopanaxadiol (**3**) and a mixture of (20*S*)and (20*R*)-dihydroprotopanaxatriol (**4a**, **4b**) by *Mycobacterium* sp. (NRRL B-3805) yielded the corresponding 3-oxo- (**5** and **7**) and 3-oxo-25-hydroxylated (**6** and **8**) derivatives. Incubation of (20*R*)-hydroxydammarane-3,12-dione (**9**), a pyridinium chlorochromate oxidation product of **3**, with the same microorganism yielded 3β ,20*R*-dihydroxydammaran-12-one (**10**); 20*R*,24dihydroxypropakisnordammarane-3,12-dione (**11**); and 3β ,20*R*,24-trihydroxypropakisnordammaran-12-one (**12**). These results indicated that the uptake of the compound into the bacterial cells might be a critical factor in the side-chain degradation process because it occurred only in the less polar compound **9**. It has also been demonstrated that hydroxylation at C-25 by this microorganism using **3** and **4** represents a diverse reaction mechanism.

Recent work in our laboratory has revealed that the 4,4,14 α -trimethyl groups in lanosterol, cycloartenol, and 24-methylenecycloartanol, together with their C-17 side chains, are oxidatively cleaved by Mycobacterium sp. (NRRL B-3805) to give C_{19} sterols.^{1,2} This finding attracted our attention to the microbial transformation of structurally related triterpenes. Protopanaxatriol and protopanaxadiol are the corresponding aglycons of ginsenosides Rg₁ and Rb₁, the major saponins in the plant "Sanchi", Panax notoginseng (Burk.) F. H. Chen (Araliaceae).³ They possess the dammarane skeleton, which is similar to lanostane except for the replacement of Me-13 by Me-8. It was considered of interest to investigate whether transformation of the derivatives of protopanaxatriol and protopanaxadiol with this same microorganism would follow a similar oxidative degradation pathway and afford C₁₉ steroids, which might be biologically active. The following reports the outcome of this study.

Results and Discussion

Both the genuine P. notoginseng aglycons protopanaxadiol and protopanaxatriol can be obtained via enzymatic hydrolysis of the corresponding saponins Rb₁ and Rg₁, but only on a small scale.⁴ The large-scale preparation of these aglycons can be achieved generally through acid hydrolysis of saponins. However, both aglycons contain Δ^{24} and OH-20 functions and yield pseudo aglycons with a pyran moiety under acidic conditions.⁵ To avoid these problems and to obtain a larger quantity of substrate for the microbial transformation, (20R)-dihydroprotopanaxadiol (3) and (20S)and (20R)-dihydroprotopanaxatriol (4a and 4b) were chosen as starting materials. They were prepared from the catalytic hydrogenation of a selected portion of crude P. notoginseng saponins, followed by acid hydrolysis.⁵ These saponins were obtained on the fractionation, inclusive of centrifugal partition chromatography, of the BuOH-soluble fraction of the EtOH extract of the roots. The ratio of ginsenoside Rb₁ and Rg₁ is about 1.42:1, as determined from a reversed-phase HPLC analysis.⁶ These three compounds were separated by a Si gel column. Among them, only small amounts of the pure C-20 epimers **4a** and **4b** were separated. Most of these two epimers were collected as a mixture, which was used for the microbial transformation study. Their structures were identified by direct comparison of their ¹³C-NMR data to those reported.⁷ The C-20 epimers **4a** (20*S*) and **4b** (20*R*) were distinguished by the more downfield shifted C-21 signals (δ 26.6 vs δ 22.3, respectively) and upfield shifted C-22 signals (δ 36.5 vs δ 43.6, respectively), which possibly result from intramolecular H-bonding between OH-12 β and OH-20.⁷

The transformation of **3** with *Mycobacterium* sp. (NRRL B-3805) produced compounds **5** and **6** in the isolated yields of 24.7% and 1.4%, respectively (Scheme 1).

Compound **5** had a molecular formula $C_{30}H_{52}O_3$, as deduced from HRFABMS, and was found to contain a carbonyl function (IR 1710 cm⁻¹ and δ_C 217.8). Its ¹H-NMR spectrum revealed only one carbinol proton signal at δ 3.57 (ddd, J = 5.2, 10.4, 10.4 Hz), assignable to H-12. Except for the lack of an H-3 signal, its ¹H-NMR data were similar to those of **3**. These spectral data established **5** as the 3-dehydro analogue of **3**, and **5** was named 12β ,20R-dihydroxydammaran-3-one.

Compound **6** had a molecular formula $C_{30}H_{52}O_4$ as deduced from HRFABMS, having one more oxygen atom than that of **5**. It was also found to contain a carbonyl function (IR 1700 cm⁻¹ and δ_C 217.8). Its ¹H-NMR data were similar to those of **5** except for the appearance of one additional two-methyl singlet at δ 1.21, and the absence of a two-methyl doublet at δ 0.85 (J = 6.6 Hz, Me-26 and Me-27). These data suggested **6** to be the C-25 hydroxylated analogue of **5**. The replacement of the C-25 doublet (δ 27.9) in **5** by a singlet (δ 71.1) in **6** in their respective ¹³C-NMR spectra also supported this suggestion. Based on this analysis, **6** was established as 12β , 20R, 25-trihydroxydammaran-3-one.

Transformation of the mixture of **4a** and **4b** by *Mycobacterium* sp. (NRRL B-3805) produced compounds **7** and **8** in the isolated yields of 23.3% and 20.9%, respectively (Scheme 1). Compound **7**, mp 130–132 °C

^{*} To whom correspondence should be addressed. Phone: (886) 2-391-6127. FAX: (886) 2-391-9098. E-mail: shoeilee@ha.mc.ntu.edu.tw. $^{\otimes}$ Abstract published in Advance ACS Abstracts, November 15, 1997.

Scheme 1. Preparation and Microbial Transformation of Protopanaxadiol and Protopanaxatriol Derivatives

a. Mycobacterium sp. (NRRL B-3805)

from MeOH, $[\alpha]^{20}{}_{\rm D}$ + 12.4° (*c* 0.5, MeOH), had the molecular formula $C_{30}H_{52}O_4$ as deduced from HREIMS. In comparison with **4a**, **7** showed two fewer protons, which accounted for one more double bond equivalent. The IR spectrum of **7** showed one carbonyl absorption at 1710 cm⁻¹. As discussed for those of **3** and **5**, the ¹H-NMR spectrum of **7** also lacked an H-3 signal, and the ¹³C-NMR data of **7** were similar to those of **4a** except for the replacement of a hydroxylated carbon (δ 79.5, d, C-3) in **4a** by a carbonyl carbon (δ 219.3) in **7**. Because the carbon signals of C-17 side chain in **7** were almost superimposable with those in **4a**, the structure of **7** was established as 6α , 12β , 20S-trihydroxydamma-ran-3-one.

Compound 8, mp 218-220 °C from CHCl₃, had a molecular formula C30H52O5 as deduced from HR-FABMS, having one more oxygen atom than 7. The IR absorptions at 3350 and 1700 cm⁻¹ indicated the presence of hydroxyl and carbonyl functions. As discussed for those of 3 and 6, the ¹H-NMR spectra of 8 and 7 were very similar, and the two-methyl doublet (δ 0.83, J = 6.6 Hz) for Me-26 and Me-27 in 7 was replaced by a two-methyl singlet at δ 1.18. Consequently, 8 was assigned as the C-25 hydroxylated analogue of 7. Comparison of the ¹³C-NMR data, however, indicated the similarity of the C-21 (δ 22.4 vs δ 22.3) and C-22 (δ 44.0 vs δ 43.6) signals in **8** and **4b**, and large differences $(\delta_{C-21} 22.4 \text{ vs } \delta 26.6, \delta_{C-22} 44.0 \text{ vs } \delta 36.5)$ in **8** and **4a**, indicating the (20R)-configuration for 8. The inverse heteronuclear multiple bond correlation (HMBC) spectrum of 8 displayed the coupling of a two-methyl singlet at δ 1.18 (Me-26 and Me-27) with the hydroxylated quaternary carbon at δ 71.5, proving C-25 to be hydroxylated. Analysis of this 2D NMR spectrum also assisted in the unambiguous assignment of ¹³C-NMR data. These observations established the structure of **8** as 6α , 12β , 20R, 25-tetrahydroxydammaran-3-one.

The results of this biotransformation study using dihydro analogues as substrate indicated simple oxidation at C-3, and subsequent hydroxylation at C-25. Further oxidative degradation on the C-17 side chain and ring-bound methyls did not occur even using **6** or **8** as substrate. We thought this might be due to the relatively high polarity of the highly hydroxylated substrate as compared with lanosterol. To prove this, we incubated the less polar substrate, (20R)-hydroxy-dammarane-3,12-dione (**9**), the pyridinium chlorochromate (PCC) oxidation product of **3**, with the same bacterium under similar conditions. Three products, compounds **10–12**, were isolated from this study in the yield of 9.5%, 7.4%, and 10.5%, respectively (Scheme 1).

Compound **9** had the molecular formula $C_{30}H_{50}O_3$ as deduced from HRFABMS, having four hydrogen atoms fewer than that of **3**. This mass spectral data together with the IR absorption at 1710 cm⁻¹ and ¹³C-NMR signals at δ 216.6 (s, C-3) and 214.0 (s, C-12) suggested that the structure of **9** was (20*R*)-hydroxydammarane-3,12-dione.

Compound **10**, mp 145–146 °C, had a molecular formula $C_{30}H_{52}O_3$ as deduced from HRFABMS. Its IR spectrum showed absorptions for hydroxyl (3402 cm⁻¹) and carbonyl (1708, 1690 cm⁻¹) functions. Its ¹H-NMR spectrum was similar to that of **3** except for the absence of the H-12 signals, indicating **10** as the 12-dehydro analogue of **3**. The H-13 signal appeared as a doublet at δ 2.81 (J = 10.3 Hz) in **10**, and the C-12 signal at δ

70.8 (d) in **3** has been replaced by a carbonyl carbon at δ 214.9 (s) in **10**. Consequently, compound **10** was structurally assigned as 3β ,20*R*-dihydroxydammaran-12-one. The ¹H- and ¹³C-NMR data of **10** were also assigned with the aid of its HMQC and HMBC spectra, with the results being listed in the Experimental Section.

Compound **11** had the molecular formula $C_{27}H_{44}O_4$, as deduced from HREIMS. The ¹H-NMR spectrum showed six methyl singlets and an oxygenated methylene signal at δ 3.62 (2H, br s, $W_{1/2} = 16.7$ Hz, H₂-24). These methyl signals resonated at almost identical frequency to the corresponding signals observed for **9**, suggesting an intact ring moiety. These data, hence, established **11** to be the side-chain degradative product of **9**, and the structure of **11** was assigned as 20R,24dihydroxy-propakisnordammarane-3,12-dione.

The FABMS of **12** showed a $[M - H]^-$ ion at m/z 433, consistent with a molecular formula of $C_{27}H_{46}O_4$, representing two more hydrogen atoms than in **11**. The ¹H-NMR spectrum (CDCl₃-CD₃OD, 3:1) showed an additional signal for a carbinol proton (δ 3.07, dd, J = 5.0, 8.5 Hz, H-3 β) besides six methyl singlets and one oxygenated methylene signal (δ 3.49, dd, J = 4.0, 6.0 Hz). These data suggested that **12** was a C-3 hydroxyl analogue of **11**. The resemblance of the ¹H- and ¹³C-NMR data (see Experimental Section) in the steroid nucleus between **12** and **10** further supported the structure of **12** being 3β , 20R, 24-trihydroxypropakisnor-dammaran-12-one.

The later work in the present investigation indicated that Mycobacterium sp. (NRRL B-3805) can degrade the terminal C₃ unit in the side chain of the less polar dammarane substrate 9. However, no degradation occurred for the ring-bound methyl residues as in lanosterol. It is interesting to note that the reduction of the C-3 carbonyl group yielded equatorially oriented C-3 hydroxyl groups instead of the more commonly found axial carbinols. This could be due to the steric effect caused by the C-4 and C-10 substitutions. During the study of cholesterol side-chain degradation with Mycobacterium sp. (NRRL B-2805), Sih and co-workers⁸ showed that the hydroxylation of one of the terminal methyl groups was the initial step of the degradation process and that the terminal C₃ unit was then cleaved as propionic acid. In our study, isolation of the 25hydroxylated products, 6 and 8, respectively, from the incubation of 3 and 4b showed an inconsistency with the expected degradation pathway. Furthermore, when 8 was incubated with this same microorganism for 192 h, we recovered mostly unchanged substrate. Based on these results, it might be concluded that the C-25 hydroxylation of 3 and 4b, respectively, must be a distinct reaction from the usual cholesterol side-chain degradation pathway.

Experimental Section

General Experimental Procedures. Melting points were measured on a Fisher-Johns melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO DIP-181 digital polarimeter. IR spectra were recorded on a JASCO A-100 infrared spectrophotometer. Mass spectra were recorded on Finnigan TSQ-700 and JEOL JMS-HX 110 mass spectrometers. ¹H- and ¹³C-NMR spectra were recorded on a Bruker AMX-400 spectrometer in CDCl₃ or CD₃-OD using residual solvent peak as reference standard. 2D NMR spectra were recorded using Bruker's standard pulse programs with the HMQC and HMBC experiments, $\Delta = 1$ s and J = 140 and 8 Hz, respectively. The correlation maps consisted of 512×1 K data points per spectrum, each composed of 32 to 64 transients.

Plant Material. The dry roots of *Panax notoginseng* were purchased in August 1994, from Chua-yuan herbal store, Taipei, Taiwan. A voucher herbarium specimen is deposited at the School of Pharmacy, National Taiwan University.

Preparation of (20R)-Dihydroprotopanaxadiol (3), (20S) - Dihydroprotopanaxatriol (4a), and (20R)-Dihydroprotopanaxatriol (4b). The EtOH extract (2.5 kg) of plant material (10 kg) was partitioned between H₂O and organic solvents to give fractions soluble in CHCl₃ (77 g), *n*-BuOH (1365 g), and H₂O. Part of the BuOH-soluble fraction (100 g) was fractionated on a Sanki centrifugal partition chromatograph (LLI-7 type; CHCl₃-MeOH-H₂O, 10:10:5) with the organic layer as mobile phase and the aqueous layer as stationary phase; flow rate of 3.5 mL·min⁻¹; rotation speed 1000–1100 rpm; and pressure 30 to 45 kg·cm⁻²) to give a fraction (25 g) containing ginsenosides Rg₁ and Rb₁ as major components. A reversed-phase HPLC analysis (10 μ m; CH₃CN-H₂O 34:66; flow rate, 1 mL; detection, 203 nm)⁶ indicated the ratio of Rg₁ (retention time 3.6 min) and Rb_1 (retention time 7.5 min) to be 1:1.42. Part of this saponin mixture (20.0 g) dissolved in MeOH (250 mL) was catalytically hydrogenated (10% Pt/C,1.5 g; H₂, 15.2 psi) overnight at room temperature. The suspension was filtered over a Celite pad and the residue washed with CHCl₃. The combined filtrate was evaporated in vacuo to give an amorphous residue (18.3 g) that, without further purification, was heated under reflux with a mixture of concentrated HCl (100 mL), EtOH (200 mL), and H₂O (200 mL) for 2 h. After cooling, the resultant white precipitate (10.8 g) was taken up in CHCl₃ via partitioning. Chromatography of this residue on a Si gel column (400 g) eluted with 0-5% MeOH in CHCl₃ gave (20R)-dihydroprotopanaxadiol (3, 453 mg), 20S-dihydroprotopanaxatriol (4a) (144 mg), and (20R)-dihydroprotopanaxatriol (4b) (1.1 g), and mixture of 4a and 4b (1.4 g) after working up in the usual method and recrystallization of the corresponding fractions from MeOH and CHCl₃.

(20*R*)-Dihydroprotopanaxadiol (3): mp 258–260 °C (MeOH) [lit.⁹ 246–248 °C (Me₂CO)]; $[\alpha]^{26}{}_{\rm D}$ +16.0° (*c* 1.0, MeOH); ¹H NMR (CDCl₃) δ 3.18 (1H, dd, J = 4.8and 11.2 Hz, H-3 α), 0.71 (1H, d, J = 10.8 Hz, H-5 α), 3.57 (1H, ddd, J = 5.2, 10.3, 10.3 Hz, H-12 α), 2.02 (1H, ddd, J = 7.2, 10.4, 10.4 Hz, H-17 α), 0.96 (3H, s, Me-18), 0.86 (3H, s, Me-19), 1.11 (3H, s, Me-21), 0.86 (6H, d, J = 6.6 Hz, Me-26, 27), 0.95 (3H, s, Me-28), 0.76 (3H, s, Me-29), 0.87 (3H, s, Me-30); NOE data, Me-28 to H-3 α 9%, H-5 α 8%, and Me-29 7%; Me-29 to Me-28 4%, and Me-19 7%; Me-19 to Me-29 1%, and Me-18 0.6%; Me-18 to Me-19 7%; H-17 α to Me-30 4%, and H-12 α 4%.

(20.5)-Dihydroprotopanaxatriol (4a): mp 223–224 °C (CHCl₃); $[\alpha]^{20}_{D}$ +3.8° (*c* 1.7, MeOH); IR (KBr) ν_{max} 3400, 2950, 2870, 1460, 1390, 1370, 1080, 1040 cm⁻¹; ¹H NMR (CD₃OD) δ 3.11 (1H, dd, J = 5.3, 11.4 Hz, H-3 α), 4.02 (1H, ddd, J = 3.7, 10.6, 10.6 Hz, H-6 β), 3.54 (1H, ddd, J = 5.2, 10.4, 10.4 Hz, H-12 α), 2.02 (1H, ddd,

Microbial Transformation of Aglycons

J = 7.1, 10.6, 10.6 Hz, H-17α), 1.08 (3H, s, Me-18), 0.95 (3H, s, Me-19), 1.13 (3H, s, Me-21), 0.89 (6H, d, J = 6.6 Hz, Me-26, 27), 1.28 (3H, s, Me-28), 0.95 (3H, s, Me-29), 0.94 (3H, s, Me-30); ¹³C NMR (CD₃OD) δ 40.1 (t, C-1), 27.8 (t, C-2), 79.5 (d, C-3), 40.2 (s, C-4), 62.1 (d, C-5), 68.9 (d, C-6), 47.3 (t, C-7), 42.0 (s, C-8), 50.8 (d, C-9), 40.5 (s, C-10), 32.0 (t, C-11), 72.0 (d, C-12), 48.6 (d, C-13), 52.4 (s, C-14), 31.9 (t, C-15), 27.3 (t, C-16), 55.1 (d, C-17), 17.6 (q, C-18), 17.7 (q, C-19), 74.5 (s, C-20), 26.6 (q, C-21), 36.5 (t, C-22), 22.4 (t, C-23), 41.1 (t, C-24), 29.3 (d, C-25), 23.1 (q, C-26), 23.0 (q, C-27), 31.4 (q, C-28), 16.1 (q, C-29), 17.1 (q, C-30); EIMS *m*/*z* 461 (1), 443 (2), 393 (8), 358 (6), 207 (23), 109 (100), 85 (21); HREIMS *m*/*z* [M]⁺ 478.4002 (calcd for C₃₀H₅₄O₄, 478.4022).

(20R)-Dihydroprotopanaxatriol (4b): mp 277-278 °C (CHCl₃) (lit.¹⁰ 273–274 °C); $[\alpha]^{20}_{D}$ +3.7° (c 1.1, MeOH); IR (KBr) v_{max} 3500, 3300, 2950, 2870, 1470, 1390, 1370, 1030 cm⁻¹; ¹H NMR (CD₃OD) δ 3.11(1H, dd, J = 5.2 and 11.4 Hz, H-3 α), 4.02 (1H, ddd, J = 3.8, 10.6, and 10.6 Hz, H-6 β), 3.55 (1H, ddd, J = 5.3, 10.4, 10.4 Hz, H-12a), 2.04 (1H, m, H-17a), 1.08 (3H, s, Me-18), 0.96 (3H, s, Me-19), 1.09 (3H, s, Me-21), 0.89 (6H, d, J = 6.6 Hz, Me-26, 27), 1.28 (3H, s, Me-28), 0.96 (3H, s, Me-29), 0.95 (3H, s, Me-30); NOE data, Me-28 to H-3a 8%, and Me-29 8%; Me-29 to Me-28 3%, and H-6 β 8%; Me-19 to Me-18 4%; Me-18 to Me-19 8%, and H-6 β 8%; Me-30 to H-17 α 2%; ¹³C NMR (CD₃OD) δ 40.1 (t, C-1), 27.8 (t, C-2), 79.5 (d, C-3), 40.1 (s, C-4), 62.1 (d, C-5), 68.9 (d, C-6), 47.3 (t, C-7), 42.0 (s, C-8), 50.7 (d, C-9), 40.5 (s, C-10), 32.0 (t, C-11), 71.8 (d, C-12), 49.2 (d, C-13), 52.5 (s, C-14), 31.9 (t, C-15), 27.1 (t, C-16), 51.0 (d, C-17), 17.6 (q, C-18), 17.7 (q, C-19), 74.7 (s, C-20), 22.3 (q, C-21), 43.6 (t, C-22), 21.8 (t, C-23), 40.9 (t, C-24), 29.2 (d, C-25), 23.2 (q, C-26), 23.0 (q, C-27), 31.5 (q, C-28), 16.1 (q, C-29), 17.4 (q, C-30); EIMS m/z 461 (0.4), 443 (1.3), 428 (0.8), 410 (1.3), 393 (3.9), 358 (4.6), 207 (32), 109 (100), 85 (18); HREIMS m/z [M]⁺ 478.4034 (calcd for C₃₀H₅₄O₄, 478.4022).

Biotransformation of (20R)-Dihydroprotopanaxadiol (3) with Mycobacterium sp. (NRRL B-3805). The microorganism was grown in Nutrient broth (1.6%)dextrose (4%) medium (1.4 L) contained in four 2-L Erlenmeyer flasks at 26-27 °C on a rotary shaker (250 rpm, 1-in stroke). Compound 3 (353 mg) was dissolved in DMF (18 mL) and distributed evenly among the flasks. After 4 days of incubation, the culture broth was acidified with HOAc to a pH of 3.0 and was extracted with CHCl₃ (400 mL \times 3). The combined CHCl₃ layer was dried over Na₂SO₄ and evaporated in vacuo to give a brownish semisolid (2.06 g) that was chromatographed over a Si gel column (60 g) eluted with 0-10% MeOH in CHCl₃. Compound 5 (87 mg, 24.74% yield) and the recovered 3 (96 mg) were obtained, respectively, by recrystallization with MeOH of the residues obtained from the 1% MeOH elution (150 mg) and 1.5% MeOH elution (159 mg). A fraction (23 mg) from 5% MeOH elution was further purified on a Sephadex LH-20 column (100 g, MeOH) to give 6 (5 mg, 1.44% yield).

12β,20*R***-Dihydroxydammaran-3-one (5):** mp 225–227 °C (MeOH); $[\alpha]^{27}{}_{\rm D}$ +40.0° (*c* 0.5, MeOH); IR (KBr) $\nu_{\rm max}$ 3300, 2950, 1710, 1460, 1380, 1360 cm⁻¹; ¹H NMR (CDCl₃) δ 2.45 (2H, m, H-2), 3.57 (1H, ddd, J = 5.2, 10.4, 10.4 Hz, H-12α), 1.72 (1H, dd, J = 10.4, 10.4 Hz, H-13), 2.02 (1H, m, H-17α), 0.95 (3H, s, Me-18), 1.02 (3H, s,

Me-19), 1.11 (3H, s, Me-21), 0.85 (6H, d, J = 6.6 Hz, Me-26, 27), 1.05 (3H, s, Me-28), 1.00 (3H, s, Me-29), 0.87 (3H, s, Me-30); ¹³C NMR (CDCl₃) δ 39.5 (t, C-1), 34.0 (t, C-2), 217.8 (s, C-3), 47.3 (s, C-4), 55.3 (d, C-5), 19.6 (t, C-6), 34.1 (t, C-7), 39.6 (s, C-8), 49.3 (d, C-9), 36.8 (s, C-10), 31.5 (t, C-11), 70.5 (d, C-12), 48.7 (d, C-13), 51.6 (s, C-14), 30.9 (t, C-15), 26.3 (t, C-16), 49.8 (d, C-17), 15.8 (q, C-18), 15.3 (q, C-19), 74.5 (s, C-20), 21.8 (q, C-21), 43.0 (t, C-22), 20.7 (t, C-23), 39.7 (t, C-24), 27.9 (d, C-25), 22.7 (q, C-26), 22.6 (q, C-27), 26.7 (q, C-28), 21.0 (q, C-29), 17.0 (q, C-30); EIMS m/z 460 (2), 424 (10), 409 (11), 375 (11), 357 (77), 339 (14), 314 (34), 299 (53), 205 (27), 108 (100); HRFABMS m/z [M + H]⁺ 461.3994 (calcd for C₃₀H₅₃O₃, 461.3995).

12β,20R,25-Trihydroxydammaran-3-one (6): mp 200-202 °C (MeOH-H₂O, 1:1); $[\alpha]^{27}$ _D +2.5° (c 0.4, MeOH); IR (KBr) $\nu_{\rm max}$ 3300, 2950, 1700, 1460, 1380, 1370 cm⁻¹; ¹H NMR (CDCl₃) & 2.45 (2H, m, H-2), 3.57 (1H, ddd, J = 5.2, 10.4, 10.4 Hz, H-12 α), 1.72 (1H, dd, J = 10.4, 10.4 Hz, H-13), 2.02 (1H, m, H-17 α), 0.96 (3H, s, Me-18), 1.02 (3H, s, Me-19), 1.12 (3H, s, Me-21), 1.21 (6H, s, Me-26, 27), 1.06 (3H, s, Me-28), 1.01 (3H, s, Me-29), 0.88 (3H, s, Me-30); ¹³C NMR (CDCl₃) & 39.7 (t, C-1), 34.0 (t, C-2), 217.8 (s, C-3), 47.3 (s, C-4), 55.3 (d, C-5), 19.6 (t, C-6), 34.1 (t, C-7), 39.6 (s, C-8), 49.3 (d, C-9), 36.8 (s, C-10), 31.6 (t, C-11), 70.6 (d, C-12), 48.6 (d, C-13), 51.6 (s, C-14), 31.0 (t, C-15), 26.3 (t, C-16), 49.9 (d, C-17), 15.9 (q, C-18), 15.3 (q, C-19), 74.3 (s, C-20), 21.9 (q, C-21), 43.0 (t, C-22), 17.6 (t, C-23), 44.1 (t, C-24), 71.1 (s, C-25), 29.4 (q, C-26), 29.4 (q, C-27), 26.7 (q, C-28), 21.0 (q, C-29), 17.0 (q, C-30); EIMS m/z 458 (2), 443 (10), 425 (11), 375 (11), 357 (37), 339 (8), 299 (17), 205 (16), 145 (26), 127 (58), 109 (64), 59 (100); HRFABMS m/z $[M + H]^+$ 477.3932 (calcd for $C_{30}H_{53}O_4$, 477.3944).

Biotransformation of the Mixture of (20.5)- and (20.R)-Dihydroprotopanaxatriol (4a and 4b) with *Mycobacterium* sp. (NRRL B-3805). A mixture of 4a and 4b (600 mg) divided evenly in eight 2-L Erlenmeyer flasks was incubated with *Mycobacterium* sp. (NRRL B-3805) in a manner similar to that described for 3. Similar workup as mentioned above yielded 7.10 g residue from the CHCl₃ fraction that was chromatographed over a Si gel column (200 g) eluted with 0-10%MeOH in CHCl₃. The fraction (377 mg) obtained from elution with 3% MeOH was repeatedly recrystallized with MeOH to give 7 (139 mg, 23.3% yield). The fraction (363 mg) obtained from the 5% MeOH elution was further purified on a Sephadex LH-20 column (100 g, MeOH) to give compound 8 (129 mg, 20.9% yield).

6α,12β,20S-Trihydroxydammaran-3-one (7): mp 130–132 °C (MeOH); [α]²⁰_D +12.4° (*c* 0.5, MeOH); IR (KBr) v_{max} 3350, 2950, 1710, 1460, 1380, 1360, 1180 cm⁻¹; ¹H NMR (CDCl₃) δ 2.22 (1H, ddd, J = 2.8, 10.0, 15.0 Hz, H-2 α), 2.68 (1H, ddd, J = 6.4, 12.0, 15.0 Hz, H-2 β), 1.63 (1H, d, J = 10.0 Hz, H-5), 3.94 (1H, ddd, J= 5.2, 9.7, 10.0 Hz, H-6 β), 3.54 (1H, ddd, J = 4.7, 10.0,10.1 Hz, H-12 α), 1.69 (1H, dd, J = 10.6, 10.6 Hz, H-13), 2.01 (1H, m, H-17a), 0.99 (3H, s, Me-18), 0.74 (3H, s, Me-19), 1.14 (3H, s, Me-21), 0.83 (6H, d, J = 6.6 Hz, Me-26, 27), 1.29 (3H, s, Me-28), 1.27 (3H, s, Me-29), 0.88 (3H, s, Me-30); ¹³C NMR (CDCl₃) & 39.6 (t, C-1), 32.9 (t, C-2), 219.3 (s, C-3), 47.1 (s, C-4), 58.8 (d, C-5), 67.5 (d, C-6), 44.8 (t, C-7), 40.2 (s, C-8), 48.3 (d, C-9), 37.9 (s, C-10), 31.7 (t, C-11), 70.3 (d, C-12), 47.3 (d, C-13), 51.4 (s, C-14), 30.9 (t, C-15), 26.3 (t, C-16), 53.2 (d, C-17),

16.6 (q, C-18), 17.4 (q, C-19), 74.2 (s, C-20), 26.9 (q, C-21), 34.9 (t, C-22), 21.2 (t, C-23), 39.7 (t, C-24), 28.1 (d, C-25), 22.6 (q, C-26), 22.5 (q, C-27), 31.8 (q, C-28), 19.4 (q, C-29), 15.8 (q, C-30); EIMS m/z 476 (2), 391 (6), 315 (20), 108 (100), 95 (50); HREIMS m/z [M]⁺ 476.3851 (calcd for C₃₀H₅₂O₄, 476.3866).

6α,12β,20R,25-Tetrahydroxydammaran-3-one (8): mp 218–220 °C (CHCl₃); [α]²⁷_D +117.0° (*c* 1.0, MeOH); IR (KBr) ν_{max} 3300, 2950, 1710, 1460, 1380, 1360 cm⁻¹; ¹H NMR (CD₃OD) δ 2.20 (1H, ddd, J = 3.3, 9.7, 15.3Hz, H-2 α), 2.83 (1H, ddd, J = 6.7, 11.8, 15.3 Hz, H-2 β), 1.74 (1H, d, J = 10.4 Hz, H-5), 3.92 (1H, ddd, J = 5.0, 10.4, 10.4 Hz, H-6 β), 3.57 (1H, ddd, J = 5.1, 10.4, 10.4 Hz, H-12a), 2.10 (1H, m, H-17a), 1.06 (3H, s, Me-18), 0.79 (3H, s, Me-19), 1.11 (3H, s, Me-21), 1.18 (6H, s, Me-26, 27), 1.32 (3H, s, Me-28), 1.29 (3H, s, Me-29), 0.98 (3H, s, Me-30); ¹³C NMR (CD₃OD) δ 40.7 (t, C-1), 34.0 (t, C-2), 222.6 (s, C-3), 49.2 (s, C-4), 59.6 (d, C-5), 68.0 (d, C-6), 45.4 (t, C-7), 41.4 (s, C-8), 49.5 (d, C-9), 39.2 (s, C-10), 32.7 (t, C-11), 71.6 (d, C-12), 49.3 (d, C-13), 52.6 (s, C-14), 32.1 (t, C-15), 27.1 (t, C-16), 50.8 (d, C-17), 16.2 (q, C-18), 18.2 (q, C-19), 74.7 (s, C-20), 22.4 (q, C-21), 44.0 (t, C-22), 18.9 (t, C-23), 45.4 (t, C-24), 71.5 (s, C-25), 29.4 (q, C-26), 29.1 (q, C-27), 32.4 (q, C-28), 19.9 (q, C-29), 17.3 (q, C-30); FABMS (neg) m/z [M -H]⁻ 491(100); HRFABMS (pos) m/z [M + H]⁺ 493.3894 (calcd for C₃₀H₅₃O₅, 493.3893).

Pyridinium Chlorochromate Oxidation of 3. To **3** (149 mg, 0.32 mmol) dissolved in CH_2Cl_2 (10 mL) in a 25-mL round-bottom flask was added PCC (139 mg, 0.64 mmol). The resultant solution was stirred at room temperature for 2 h, then Et_2O (10 mL) was added and the grayish brown precipitate was removed by filtering through a Celite pad. The filtrate was evaporated, and the residue was recrystallized repeatedly from MeOH to give colorless needles of **9** (100 mg, 0.22 mmol, 68% yield).

(20R)-Hydroxydammarane-3,12-dione (9): mp 125–126 °C (CHCl₃); $[\alpha]^{27}_{D}$ +30.0 (*c* 0.1, MeOH); IR (KBr) $\nu_{\rm max}$ 3450, 2950, 1710, 1460, 1380 cm⁻¹; ¹H NMR (CDCl₃) & 2.46 (2H, m, H-2), 2.25 (2H, m, H-11), 2.82 (1H, d, J = 10.3 Hz, H-13 β), 2.38 (1H, m, H-17 α), 1.18 (3H, s, Me-18), 1.03 (3H, s, Me-19), 0.95 (3H, s, Me-21), 0.84 (6H, d, J = 6.6 Hz, Me-26, 27), 1.06 (3H, s, Me-28), 1.00 (3H, s, Me-29), 0.77 (3H, s, Me-30); ¹³C NMR (CDCl₃) δ 39.0 (t, C-1), 33.2 (t, C-2), 216.6 (s, C-3), 47.3 (s, C-4), 55.1 (d, C-5), 19.6 (t, C-6), 33.7 (t, C-7), 40.0 (s, C-8), 52.5 (d, C-9), 37.0 (s, C-10), 39.0 (t, C-11), 214.0 (s, C-12), 56.5 (d, C-13), 54.4 (s, C-14), 30.8 (t, C-15), 25.0 (t, C-16), 43.9 (d, C-17), 15.4 (q, C-18), 15.4 (q, C-19), 73.4 (s, C-20), 21.7 (q, C-21), 42.9 (t, C-22), 20.9 (t, C-23), 39.6 (t, C-24), 28.0 (d, C-25), 22.7 (q, C-26), 22.6 (q, C-27), 26.5 (q, C-28), 21.0 (q, C-29), 17.3 (q, C-30); EIMS m/z [M – H₂O]⁺ 440 (6), 373 (46), 234 (12), 205 (8), 129 (1), 124 (100), 109 (6); HREIMS m/z [M]⁺ 458.3767 (calcd for C₃₀H₅₀O₃, 458.3760).

Biotransformation of (20*R***)-hydroxydammarane-3,12-dione (9) with** *Mycobacterium* **sp. (NRRL B-3805).** Compound **9** (95 mg) was dissolved in DMF (5 mL) and distributed evenly in the flask containing the microorganism and 400 mL of medium in a manner similar to that of **3**. After 4 days of incubation, similar workup as mentioned above yielded 0.87 g of residue from the CHCl₃ fraction (400 mL \times 3). The residue was chromatographed over a Si gel column (40 g) eluted with 0-10% MeOH in CHCl₃. Compounds **10** (9 mg, 9.5%) and **11** (7 mg, 7.4%) were purified, in turn, from fractions from 0.5% MeOH (40 mg) and 1% MeOH elution (11 mg) via a Sephadex LH-20 column (100 g, MeOH). Compound **12** (10 mg, 10.5%) was purified by direct crystallization of the fraction (82 mg) of 5% MeOH elution from CHCl₃.

3β,20R-Dihydroxydammaran-12-one (10): mp 145-146 °C (MeOH); [α]²⁷_D +25.0° (*c* 0.8, MeOH); IR (KBr) v_{max} 3402, 3312, 2931, 2854, 1708, 1690, 1466, 1381 cm⁻¹; ¹H NMR (CDCl₃) δ 3.17 (1H, dd, J = 5.0, 11.2 Hz, H-3 α), 0.75 (1H, d, J = 11.0 Hz, H-5 α), 2.28 (1H, dd, J = 4.5, 14.0 Hz, H-11 α), 2.19 (1H, dd, J = 14.0, 14.0 Hz, H-11 β), 2.81 (1H, d, J = 10.3 Hz, H-13 β), 2.40 (1H, ddd, J = 6.6, 10.4, 10.4 Hz, H-17 α), 1.15 (3H, s, Me-18), 0.91 (3H, s, Me-19), 0.96 (3H, s, Me-21), 0.85 (6H, d, J = 6.6 Hz, Me-26, 27), 0.97 (3H, s, Me-28), 0.78 (6H, s, Me-29, 30); ¹³C NMR (CDCl₃) & 38.4 (t, C-1), 27.1 (t, C-2), 78.5 (d, C-3), 38.9 (s, C-4), 55.7 (d, C-5), 18.3 (t, C-6), 33.9 (t, C-7), 40.1 (s, C-8), 53.2 (d, C-9), 37.4 (s, C-10), 39.0 (t, C-11), 214.9 (s, C-12), 56.5 (d, C-13), 54.4 (s, C-14), 30.8 (t, C-15), 25.1 (t, C-16), 43.9 (d, C-17), 15.8 (q, C-18), 15.8 (q, C-19), 73.5 (s, C-20), 21.7 (q, C-21), 42.9 (t, C-22), 20.9 (t, C-23), 39.6 (t, C-24), 28.0 (d, C-25), 22.8 (q, C-26), 22.6 (q, C-27), 28.0 (q, C-28), 15.3 (q, C-29), 17.4 (q, C-30); FABMS (neg) m/z [M -H]⁻ 459; HRFABMS (pos) m/z [M + H]⁺ 461.3995 (calcd for C₃₀H₅₃O₃, 461.3995).

20R,24-Dihydroxypropakisnordammarane-3,12**dione (11):** amorphous solid; $[\alpha]^{27}_{D}$ +40.0° (*c* 0.2, MeOH); IR (KBr) $\nu_{\rm max}$ 3386, 2924, 2854, 1703, 1459, 1384 cm⁻¹; ¹H NMR (CDCl₃) & 2.46 (2H, m, H-2), 2.25 $(2H, m, H-11), 2.82 (1H, d, J = 10.2 \text{ Hz}, H-13\beta), 2.38$ (1H, m, H-17a), 1.01 (3H, s, Me-18), 1.08 (3H, s, Me-19), 3.62 (2H, br s, $W_{1/2} = 16.7$ Hz, CH_2OH), 1.05 (3H, s, Me-25), 1.00 (3H, s, Me-26), 0.80 (3H, s, Me-27); ¹³C NMR (CDCl₃) δ 38.9 (t, C-1), 33.1 (t, C-2), 216 (s, C-3), 47.3 (s, C-4), 55.1 (d, C-5), 19.6 (t, C-6), 33.7 (t, C-7), 40.0 (s, C-8), 52.3 (d, C-9), 37.0 (s, C-10), 39.6 (t, C-11), 214.5 (s, C-12), 56.7 (d, C-13), 54.3 (s, C-14), 30.6 (t, C-15), 25.1 (t, C-16), 44.6 (d, C-17), 15.5 (q, C-18), 15.4 (q, C-19), 73.2 (s, C-20), 21.5 (q, C-21), 38.9 (t, C-22), 26.9 (t, C-23), 63.4 (t, C-24), 26.5 (q, C-25), 21.0 (q, C-26), 17.5 (q, C-27); EIMS m/z [M]⁺ 432 (0.5), 414 (5), 399 (15), 384 (6), 373 (100); HREIMS m/z [M]⁺ 432.3193 (calcd for $C_{27}H_{44}O_4$, 432.3239), $[M - H_2O]^+$ 414.3114 (calcd for $C_{27}H_{42}O_3$, 414.3134), $[M - H_2O - Me]^+$ 399.2921 (calcd for C₂₆H₃₉O₃, 399.2900).

3β,20R,24-Trihydroxypropakisnordammaran-12**one (12):** mp 280–282 °C (CHCl₃); $[\alpha]^{26}_{D}$ +10.0° (*c* 0.1, pyridine); IR (KBr) v_{max} 3397, 2917, 2850, 1733, 1468, 1378, 1180, 1057 cm⁻¹; ¹H NMR (CDCl₃-CD₃OD, 3:1) δ 3.07 (1H, dd, J = 5.0, 8.5 Hz, H-3 α), 2.18 (2H, m, H-11), 2.77 (1H, d, J = 10.3 Hz, H-13 β), 2.30 (1H, ddd, *J* = 7.1, 10.3, 10.3 Hz, H-17α), 1.10 (3H, s, Me-18), 0.85 (3H, s, Me-19), 0.93 (3H, s, Me-21), 3.49 (2H, dd, J =4.0, 6.0 Hz, CH2OH), 0.89 (3H, s, Me-25), 0.72 (3H, s, Me-26), 0.71 (3H, s, Me-27); ¹³C NMR (CDCl₃-CD₃OD, 3:1) δ 38.3 (t, C-1), 26.3 (t, C-2), 77.9 (d, C-3), 38.6 (s, C-4), 55.5 (d, C-5), 18.0 (t, C-6), 33.6 (t, C-7), 39.9 (s, C-8), 53.1 (d, C-9), 37.1 (s, C-10), 38.7 (t, C-11), 215.8 (s, C-12), 56.4 (d, C-13), 54.4 (s, C-14), 30.3 (t, C-15), 24.7 (t, C-16), 44.0 (d, C-17), 15.4 (q, C-18), 15.4 (q, C-19), 73.2 (s, C-20), 21.5 (q, C-21), 38.2 (t, C-22), 26.1 (t, C-23), 62.5 (t, C-24), 27.5 (q, C-25), 15.0 (q, C-26),

Microbial Transformation of Aglycons

17.2 (q, C-27); FABMS (neg) m/z [M – H][–] 433; HR-FABMS (pos) m/z [M – H₂O + H]⁺ 417.3355 (calcd for C₂₇H₄₅O₃, 417.3369).

Acknowledgment. The authors are grateful to the Department of Health, Taiwan, Republic of China, for the financial support of this research under the grant DOH87-HR-739.

References and Notes

- (1) Wang, K. C.; Young, L. H.; Wang, Y.; Lee, S. S. Tetrahedron Lett. **1990**, *31*, 1283–1286.
- (2) Lee, S. S.; Young, L. H.; Wang, K. C. J. Nat. Prod. 1991, 54, 178–183.

Journal of Natural Products, 1997, Vol. 60, No. 12 1241

- (3) Matsura, H.; Kasai, R.; Tanaka, O.; Zhou, J.; Saruwatari, Y.; Fuwa, T. Chem. Pharm. Bull. 1983, 31, 2281–2287.
- (4) Kohda, H.; Tanaka, O. Yakugaku Zasshi 1975, 95, 246-249.
- (5) Shibata, S.; Tanaka, O.; Ando, T.; Sado, M.; Tsushima, S.; Ohsawa, T. *Chem. Pharm. Bull.* **1966**, *14*, 595-600.
- (6) Sticher, O.; Soldati, F. Planta Med. 1979, 36, 30-42.
- (7) Asakawa, J.; Kaisai, R.; Yamasaki, K.; Tanaka, O. *Tetrahedron* 1977, 33, 1935–1939.
- (8) Fujimoto, Y.; Chen, C. S.; Szeleczky, Z.; Di'Tullio, D.; Sih, C. J. J. Am. Chem. Soc. 1982, 104, 4718–4720.
- (9) Tanaka, O.; Nagai, M.; Shibata, S. Chem. Pharm. Bull. 1966, 14, 1150–1156.
- (10) Nagai, Y.; Tanaka, O.; Shibata, S. Tetrahedron 1971, 27, 881–892.

NP970331Y